ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ

ЗАДАЧИ №№ 1-10

- 1. В разложении $(x^2 + y)^{10}$ найти члены, содержащие x^4 .
- 2. В разложении $(x^2 + y)^{10}$ найти члены, содержащие x^{14} .
- 3. В разложении $(x^2 + y)^{10}$ найти члены, содержащие x^{12} .
- 4. В разложении $(x^2 + y)^{10}$ найти члены, содержащие x^{16} .
- 5. В разложении $(x^2 + y)^{10}$ найти члены, содержащие x^{10} .
- 6. В разложении $(x^3 + y^2)^8$ найти члены, содержащие x^9 .
- 7. В разложении $(x^3 + y^2)^8$ найти члены, содержащие x^{15} .
- 8. В разложении $(x^3 + y^2)^8$ найти члены, содержащие x^{12} .
- 9. В разложении $(x+y^2)^{11}$ найти члены, содержащие x^7 .
- 10. В разложении $(x+y^2)^{11}$ найти члены, содержащие x^{10} .

ЗАДАЧИ №№ 11-20

С помощью диаграмм Эйлера-Венна проверить справедливость следующих равенств:

- 11. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 12. $A \cup (B \cap (A \cup C)) = (A \cup B) \cap (A \cup C)$.
- 13. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- 14. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 15. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- 16. $A \cup (B \cup C) = (A \cup B) \cup C$.
- 17. $A \setminus B = A \setminus (A \cap C)$.
- 18. $A \cap (B \cap C) = (A \cap B) \cap C$.
- 19. $A \cap (B \cup (A \cap C)) = (A \cap B) \cup (A \cap C)$.
- 20. $(A \setminus B) \setminus C = (A \setminus C) \setminus B$.

ЗАДАЧИ №№ 21-30

Для заданной логической функции f(x, y, z):

- а) построить таблицу истинности;
- б) используя построенную таблицу, найти СДНФ и СКНФ;
- в) преобразовать заданную запись логической функции в эквивалентное выражение, содержащее только логические операции НЕ, ИЛИ, И.
 - 21. $f(x, y, z) = \overline{x} \lor y \to z \land (y \leftrightarrow x);$
 - 22. $f(x, y, z) = (\overline{x \wedge y} \rightarrow \overline{z}) \rightarrow (x \vee z \leftrightarrow y);$
 - 23. $f(x, y, z) = x \wedge \overline{(y \vee z)} \leftrightarrow (\overline{y} \rightarrow z);$
 - 24. $f(x, y, z) = (\overline{x} \land y) \rightarrow (z \leftrightarrow x) \lor (x \lor z);$
 - 25. $f(x, y, z) = x \lor y \land z \rightarrow (\overline{x} \leftrightarrow \overline{z});$
 - 26. $f(x, y, z) = (x \wedge \overline{y}) \vee (z \leftrightarrow y) \wedge x$;

- 27. $f(x, y, z) = (\overline{\overline{x \wedge y} \rightarrow \overline{z}}) \lor (z \leftrightarrow y);$
- 28. $f(x, y, z) = (\overline{x} \wedge \overline{z}) \rightarrow (\overline{x} \vee \overline{z} \leftrightarrow y) \wedge x$;
- 29. $f(x, y, z) = (y \vee \overline{z}) \leftrightarrow (\overline{x} \vee y \to z);$
- 30. $f(x, y, z) = (\overline{x \to y} \land (y \lor \overline{z} \leftrightarrow y);$

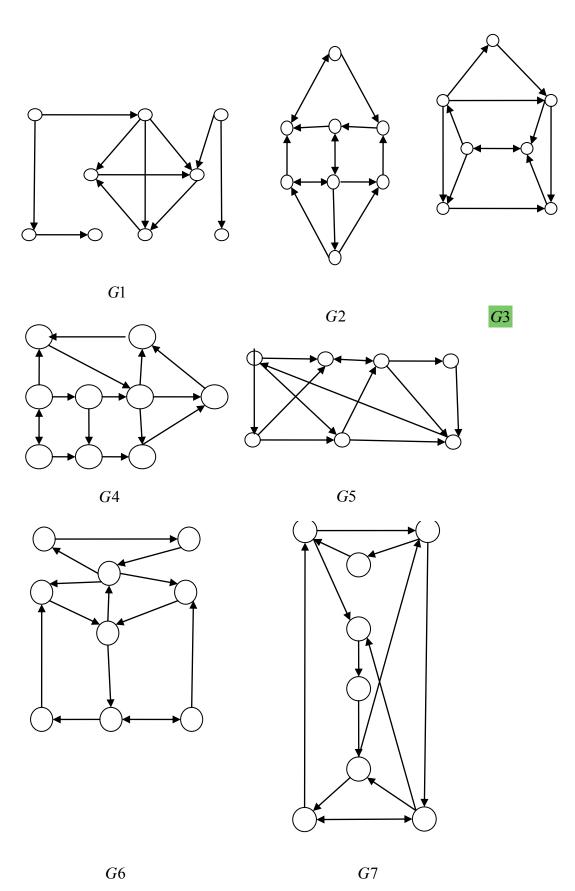
ЗАДАЧИ №№ 31 – 40

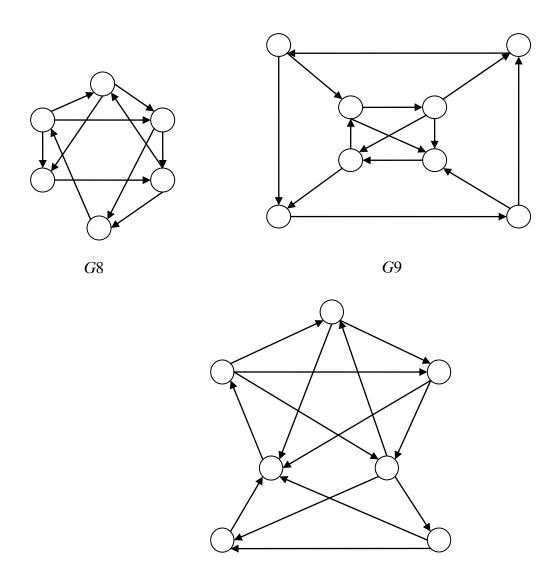
Для заданных ниже высказываний А:

- а) записать их с помощью кванторов;
- б) составить отрицание высказывания А в виде, содержащем кванторы, и дать его словесную формулировку, не начинающуюся со слов «Не верно, что...».
 - 31. Функция f(x) непрерывна на (a,b).
 - 32. Числовая последовательность $\{a_n\}$ при $n \to \infty$ имеет предел B.
 - 33. Функция f(x) ограничена на R (множестве вещественных чисел).
 - 34. Функция f(x) непрерывна в точке x_0 .
 - 35. Числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится к сумме S.
 - 36. Функция f(x) стремится к $+\infty$, если x стремится к x_0 .
 - 37. Функция f(x) монотонно возрастает на [a,b].
 - 38. Функция f(x) монотонно убывает на [a,b].
 - 39. Функция f(x) достигает максимума на [a,b].
 - 40. Функция f(x) достигает минимума на [a,b].

ЗАДАЧИ № 41 – 50

- а) Для графа G_i и н- G_i постройте матрицы смежности и матрицы инциденций.
- б) Для графа н- G_i проверьте, является ли он эйлеровым. Если нет, то обоснуйте почему. В противном случае постройте и приведите для этого графа эйлеров цикл.
- в) Методом Краскала постройте остов (любой) графа G_i .


Примечание к выбору варианта из задач серии 41-50.


Сформулированные ниже задачи с номерами 41-50 относятся к разделу программы «Теория графов». Соответствующие графы представлены в виде диаграмм G1- G10 ниже.

Номер варианта ј серии задач 41- 50 контрольной работы выполняется студентом для граф G_i , который является предметом исследования в сформулированных ниже задачах. Так, если студенту нужно выполнить вариант задачи 43 , то он решает эту задачу для графа G3.

Присвойте вершинам графа G_i попарно различные номера из диапазона 1,2,..., n, где n — число вершин графа G_i .

Представленные графы являются ориентированными, но наряду с каждым таким графом G_i рассмотрите неориентированный граф, полученный из него заменой каждой дуги ребром. Последний граф далее в условиях задач обозначается как $\,$ н- $\,$ G_i .

*G*10