Расчетное задание №3. Нелинейное программирование. Оптимизация функции одной переменной

Для целевой функции

Определить минимальное значение x^* на локальном отрезке [a,b], используя различные численные методы 1 и 2 порядка, перечисленные ниже. Требуемая точность нахождения x^* eps(x) приведена в таблице 1, она одинакова для всех методов. Требуемая точность нахождения f '(x^*) eps(y) =0,01, она одинакова для всех методов и всех вариантов.

- 1.метод бисекций
- 2. метод хорд
- 3. метод касательных
- 4. метод Ньютона

B методе Ньютона за начальное приближение принимать конец локального отрезка [a,b] — точку b.

Таблица 1 Исходная информация для расчетов по методам «1» и «2» порядка.

№	Номера методов	Заданный Eps(x)	
вар	•	интервал	
1	1,2, 4,	0-1.4	0,015
2	3,2,4,	0-2.1	0,02
3	1,3,4,	0-2.8	0,025
4	2,3,4	0-3	0,03
5	1,3,4	0.2-0.9	0,01
6	1,2,4	0-2.1	0,02
7	1,2,3	0-3	0,03
8	1,2,4	0-1.4	0,015
9	1,2,4	0-2.1	0,02
10	1,3,4	0-2.8	0,025
11	1,2,3	0-3	0,03
12	1,3,4	0-0.7	0,01
13	1,2,4	0-2.1	0,02
14	1,3,4	0-3	0,03
15	1,3,4	0-2.8	0,025
16	1,2,3	0-1.4	0,015
17	2,3,4	0-2.1	0,02
18	1,3,4	0-2.8	0,025
19	2,3,4	0-3	0,03
20	1,2,4	0-0.7	0,01
21	1,2, 4,	0-1.4	0,025
22	3,2,4,	0-2.1	0,03
23	1,3,4,	0-2.8	0,01
24	2,3,4	0-3	0,02
25	1,3,4	0-0.7	0,03
26	1,2,4	0-2.1	0,025

Сравните эффективность примененных методов.