Индивидуальное домашнее задание № 2 (весенний семестр) для НК-201 (суммарно 40 баллов).

- 1. В условиях задачи 17 ИДЗ 1 (осенний семестр) найдите:
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η
 - 3) Математическое ожидание и дисперсию случайной величины μ .
- 2. В условиях задачи 15 ИДЗ 1 (осенний семестр) найдите:
 - 1) Математическое ожидание и дисперсию случайной величины ξ
 - 2) **Четный номер варианта** математическое ожидание случайной величины η . **Нечетный номер варианта** математическое ожидание случайной величины μ
- 3. В условиях задачи 18 ИДЗ 1 (осенний семестр) найдите:
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η .
 - 3) Математическое ожидание и дисперсию случайной величины μ .
 - 4) Математическое ожидание и дисперсию случайной величины $\eta = |\xi \eta|$
- 4. В условиях задачи 19 ИДЗ 1 (осенний семестр) найдите
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η .
 - 3) Математическое ожидание случайной величины μ .
- **5.** Непрерывная случайная величина ξ имеет плотность $p_{\xi}(x)$. Найдите константу A, медиану и моду.
- 6. В условиях задачи 17 ИДЗ 1 (осенний семестр) найдите:
 - 1) условное математическое ожидание с.в. ξ при условии η ;
 - 2) условное математическое ожидание с.в. η при условии ξ .
 - 3) Для **четного номера варианта** условное математическое ожидание с.в. μ при условии η . Для **нечетного номера варианта** условное математическое ожидание с.в. μ при условии ξ .
- 7. В условиях задачи 19 ИДЗ 1 (осенний семестр) найдите:
 - для **нечетного номера варианта** условное математическое ожидание с.в. η при условии ξ ;
 - для **четного номера варианта** условное математическое ожидание с.в. ξ при условии η ;
- 8. В условиях задачи 20 ИДЗ 1 (осенний семестр) вычислите:
 - 1) характеристические функции $f_{\xi}(t)$ и $f_{\eta}(t)$ случайных величин ξ и η ;
 - 2) характеристическую функцию $f_{\mu}(t)$ случайной величины μ ;
- **9.** По заданной характеристической функции $f_{\varepsilon}(t)$ вычислите:
 - 1) математическое ожидание случайной величины ξ ;
 - 2) дисперсию случайной величины ξ .
- **10.** Посетитель тира платит за выстрел a рублей. При попадании в девятку получает выигрыш b рублей, при попадании в десятку получает выигрыш c рублей. Если стрелок не попадает ни в девятку, ни в десятку, то деньги ему не выплачиваются. Вероятности попадания в девятку, десятку и промаха равны p_1 , p_2 и p_3 соответственно. Число посетителей равно n.

С помощью неравенства Чебышева:

- 1) найдите границы, в которых будет лежать суммарная прибыль владельца тира с вероятностью не менее α ;
- 2) найдите число посетителей тира, чтобы вероятность отклонения суммарной прибыли от среднего размера суммарной прибыли на величину не меньше β % от средней суммарной прибыли равнялась p

С помощью центральной предельной теоремы оцените вероятность того, что

- 1) размер убытка у владельца тира будет лежать в пределах от m_1 до m_2 рублей;
- 2) что суммарная прибыль окажется в пределах от n_1 до n_2 рублей.
- 11. Статистический анализ, проведенный по заказу авиакомпании, показал, что распределение веса (в кг) пассажира авиарейса с грузом хорошо описывается плотностью распределения

$$p(x) = Ax^3(150-x), x \in (0; 150).$$

Масса пустого снаряженного самолета равна 135 тонн. Максимальная взлетная масса равна 260 тонн. При посадке зарегистрировано n пассажиров.

- 1) Какой коммерческий груз (в кг) можно дополнительно везти этим рейсом, чтобы вероятность перегрузки составила не более α %.
- 2) Найдите вероятность перегрузки, если дополнительный коммерческий груз составил m тонн.

- **12.** По заданным выборкам $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ объема n = 50 найти и построить:
 - 1) минимальный и максимальный элементы выборки, разброс выборки, статистический ряд;
 - 2) гистограмму, полигон относительных частот, эмпирическую функцию распределения;
 - 3) выборочные характеристики: среднее, дисперсию (смещенную и несмещенную) (по выборке и по статистическому ряду), медиану.
- **13.** Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с заданною плотностью $p_{\xi}(x)$ с неизвестным параметром. Найдите оценку неизвестного параметра методом моментов.
- **14.** Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} 2\sqrt{\frac{\overline{a}}{\pi}}e^{-\left(x\sqrt{a} - \frac{\sqrt{b}}{x}\right)^2}, & x > 0\\ 0, & x < 0 \end{cases}$$

с неизвестными параметрами (a, b). Найдите оценку максимального правдоподобия этих параметров

15. Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} \frac{1}{\sqrt{a\pi x^2}} e^{-\frac{(\ln x - b)^2}{2a}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

с неизвестными параметрами (a, b). Найдите оценку максимального правдоподобия этих параметров

- **16.** Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с неизвестным параметром. При помощи метода максимального правдоподобия (ММП) найти оценку неизвестного параметра распределения, проверить полученную оценку на несмещённость и эффективность.
- **17.** С помощью критерия отношения правдоподобия проверить гипотезы H_0 и H_1 о принадлежности выборки $X_1, X_2, ..., X_n$ дискретному распределению с заданными параметрами.
- **18.** С помощью критерия отношения правдоподобия проверить гипотезы H_0 и H_1 о принадлежности выборки X_1, X_2, \dots, X_n непрерывному распределению с заданными параметрами.
- **19.** Для заданной выборки $X_1, X_2, ..., X_n$ с помощью критерия χ^2 проверить гипотезу о принадлежности выборки к заданному дискретному распределению (с помощью метода моментов найти параметры распределения).
- **20.** Для заданной выборки $X_1, X_2, ..., X_n$ с помощью критерия χ^2 проверить гипотезу о принадлежности выборки к непрерывному распределению (с помощью метода моментов найти параметры распределения).

Распределение баллов (40 баллов)

Задача 1 (1,5 балла)			Задача 2 (1,5		Задача 3 (2 балла			ла)	Задача 4 (3 балла)			Задача	5 Задач	Задача 6 (2 балла)	
		бал	ла)												
0,5	0,5	0,5	1	0,5	0,5	0,3	0,5	0,7	1	1	1	1 балл	п 0,5	0,5	1
Задача 7	2 балла)	Зад	ача 9 (9 (1,5 балла)			Задача 10 (2 балла)			Задача 11 (1,5 балла)			алла)		
2 балла	2 балла 1,4		0,6	0,5	5 1			0,5	0,5	0,5		0,5	0,7	0,8	
Математическая статистика															
Задача 12 (1,5 балла)			38	дача Задача		14а	Задача	а Зада	Задача 16		17	Задача	Задача 1	адача 19 Зада	
				13	14		15					18			
0,5	0,5	0,5	5 26	балла	2 ба.	іла	2 балл	a 2,5	балла	2 бал.	па	2 балла	3 балла	3	балла

13	5.					(0.	<i>x</i> ∉ [-2:11					
10		$p_{\xi}(x) = \begin{cases} 0, & x \notin [-2; 1] \\ A(2 - 3x)^2, & x \in [-2; 1] \end{cases}$ $f(t) = \frac{\cos 2t (1 + 2\cos 2t)}{3}$												
	9.	$\cos 2t \left(1 + 2\cos 2t\right)$												
	10. $a = 175, b = 200, c = 500, p_1 = 0.4, p_2 = 0.15, p_3 = 0.45, n = 0.45$													
												= 550,		
		$m_1 = 0, \qquad m_2 = 1000, \qquad n_1 = 6000, \qquad n_2 = 11500.$ $11. \qquad \qquad \qquad n = 425, \qquad \alpha = 0,25, \qquad m = 42$ $12. \qquad \qquad Bыборка X_1,, X_n$ $[1,] \qquad 11 \qquad 8 \qquad 11 \qquad 9 \qquad 13 \qquad 6 \qquad 12 \qquad 5 \qquad 12 \qquad 10$ $[2,] \qquad 7 \qquad 9 \qquad 5 \qquad 21 \qquad 9 \qquad 10 \qquad 14 \qquad 8 \qquad 9 \qquad 5$ $[3,] \qquad 8 \qquad 15 \qquad 11 \qquad 17 \qquad 11 \qquad 7 \qquad 14 \qquad 9 \qquad 13 \qquad 14$ $[4,] \qquad 10 \qquad 9 \qquad 9 \qquad 10 \qquad 10 \qquad 7 \qquad 16 \qquad 9 \qquad 12 \qquad 11$ $[5,] \qquad 1 \qquad 6 \qquad 9 \qquad 10 \qquad 9 \qquad 7 \qquad 6 \qquad 12 \qquad 5 \qquad 10$												
	11													
		Выборка Y_1, \dots, Y_n [1,] 5.80 6.99 16.14 9.31 14.50 8.53 11.58 14.76 17.75 12.81 [2,] 16.92 7.64 5.99 7.01 14.71 17.09 15.55 4.95 5.99 5.56												
		[3,] 3.72 6.82 4.60 -0.92 17.34 17.49 21.08 0.00 9.63 7.70 [4,] 10.35 8.57 9.21 11.20 13.53 6.71 16.09 1.19 19.48 6.38 [5,] 18.56 10.69 4.64 8.70 14.10 5.74 17.40 9.29 7.72 9.65												
	13.													
		•	1	f()	$c = \begin{cases} 1 \\ 1 \end{cases}$	$p\lambda_1^{^1}e^{-\lambda_1}$	$x^{x} + (1$	-p)	$\lambda_2^2 x e^{-\lambda}$	2 X, X	> 0			
		Пентопи	** *** 0****	, (,	(0,	- 2 1	_ 0	0 ****	$x \leq$	0		ma M. Ta	5
		стот	ных значени	цах пар	аметр	ов л ₁ =	- Z и л	$_2 = 0$,о наит	и оце	нку п	арамет	ра <i>р</i> . та	олица ча-
			интервалы	0-	0.5-	1-	1.5-	2-	2.5-	3-	3.5-	4-	4.5-5	
		_		0.5	1	1.5	2	2.5	3	3.5	4	4.5		
			частоты	253	104	49	27	19	13	10	8	6	5	
	14.	. По заданной таблице частот найти оценку ММП параметров a и b												
				нтерва).6- 1.					.6- 6	5.6-		
												7.6		
				частот	ы 1	178 40	08 20	66	108	31	6	3		
	15.	По заданно интервали	ой таблице ч ы 2.0- 5	астот 1 5.5-	найти 90-	оценку 12.5-	MMΠ 16.0		метров 19.5-	аи <i>b</i> 23.0	<u> </u>	26.5-	30.0-	33.5-
		интервали			12.5	16.0	19.		23.0	26.3		30.0	33.5	37.0
		частоты			113	33	13		5	2		0	0	1
											l			
	16.	Пуассоновское распределение [1,] 8 8 7 9 15 7 9 12 8 13 [2,] 11 11 7 16 9 14 8 11 6 13 [3,] 13 7 10 12 6 8 9 11 6 9												
				5 8			11							
			7 12 12 1 пи ММП на		14—1 тенку		15 сии и	прове	епить э	TV OHE	HKV F	на нест	мешённо	сть и эф-
	При помощи ММП найти оценку дисперсии и проверить эту оценку на несмещё фективность.									,1014,011110	512 H 54			
	17.	7. Гипотеза H_0 пуассоновское распределение $Pois(\lambda = 12)$												
	Гипотеза H_1 пуассоновское распределение $Pois(\lambda=13), \alpha=0.15$ [1,] 17 18 14 9 13 11 12 11 10 14													
			5 10 15		8 19		10							
			5 11 15 1		16 1		10							
			1 11 16 1 3 13 15 1		11 1 17 1		18 20							
	<u> </u>	[2,] 14 10	, 13 13 1	0 14	1/ 1	0 10	20							

18.	Гипотеза H_0 гамма-распределение $Gamma(\gamma = 6, \lambda = 2)$
	Гипотеза H_1 гамма-распределение $Gamma(\gamma = 6, \lambda = 1.5), \alpha = 0.1$
	[1,] 3.25 2.39 4.49 3.40 3.91 6.19 1.93 4.11 2.02 3.16
	[2,] 5.07 2.80 1.86 7.34 4.13 5.28 4.42 3.22 3.07 2.71
	[3,] 3.61 5.02 3.11 3.21 5.07 5.50 8.49 5.14 1.88 6.14
	[4,] 5.49 4.29 6.90 5.97 4.94 4.56 3.04 3.09 4.76 4.23
	[5,] 4.03 4.42 3.11 6.02 2.19 6.22 4.18 3.99 6.14 1.77
19.	
17.	[1,] 11 8 11 9 13 6 12 5 12 10
	į / <u>j</u>
	[3,] 8 15 11 17 11 7 14 9 13 14
	[4,] 10 9 9 10 10 7 16 9 12 11
	[5,] 1 6 9 10 9 7 6 12 5 10
20.	Нормальное распределение с неизвестными параметрами m и σ , $\alpha = 0.05$
	[1,] 5.80 6.99 16.14 9.31 14.50 8.53 11.58 14.76 17.75 12.81
	[2,] 16.92 7.64 5.99 7.01 14.71 17.09 15.55 4.95 5.99 5.56
	[3,] 3.72 6.82 4.60 -0.92 17.34 17.49 21.08 0.00 9.63 7.70
	[4,] 10.35 8.57 9.21 11.20 13.53 6.71 16.09 1.19 19.48 6.38
	[5,] 18.56 10.69 4.64 8.70 14.10 5.74 17.40 9.29 7.72 9.65
	[1-7]