
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

ЭЛЕКТРОДИНАМИКА. РАСПРОСТРАНЕНИЕ РАДИОВОЛН

Программы, контрольные вопросы и методические указания к выполнению контрольных работ № 1, 2

Санкт-Петербург 2006 Составители: д-р физ.- мат. наук, проф. Д. В. Благовещенский, канд. техн. наук, доц. Л. А. Федорова Рецензент канд. техн. наук, доц. О. С. Астратов

Издание содержит программы разделов курсов: «Электродинамика» и «Распространение радиоволн», которые могут сочетаться в различных комбинациях в зависимости от номера специальности. Программа предусматривает изучение основных понятий, положений и закономерностей электродинамики и распространения радиоволн. Даны контрольные вопросы и методические указания к самостоятельной работе и выполнению контрольных заданий.

Предназначены для студентов заочного факультета радиотехнических специальностей.

Подготовлены кафедрой антенн и эксплуатации радиоэлектронной аппаратуры и рекомендованы к изданию редакционно-издательским советом Санкт-Петербургского государственного университета аэрокосмического приборостроения.

Редактор А. В. Семенчук Компьютерная верстка Н. С. Степановой

Подписано к печати 30.05.06. Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 1,39. Уч. -изд. л. 1,5. Тираж 100 экз. Заказ № 2 %4

Редакционно-издательский отдел
Отдел электронных публикаций и библиографии
Отдел оперативной полиграфии
ГУАП
190000, Санкт-Петербург, ул. Б. Морская, 67

© ГОУ ВПО «Санкт-Петербургский государственный университет аэрокосмического приборостроения», 2006

1. ЦЕЛЬ ДИСЦИПЛИН И ИХ ЗНАЧЕНИЕ ДЛЯ ПОДГОТОВКИ СПЕЦИАЛИСТОВ

Методические указания составлены в помощь студентам, изучающим в соответствии с выбранной специальностью следующие дисциплины: 1) для специальности 200700 «Электродинамика и распространение радиоволн» 2) для специальности 201300 «Электродинамика и техника сверхвысоких частот».

Данные дисциплины объединяют проблемы, основанные на свойствах и особенностях электромагнитного поля. Главной задачей является раскрытие физического содержания электромагнитных процессов в различных средах, структуры полей и поведения волновых явлений. Особая роль отводится уравнениям Максвелла, которые наиболее полно описывают всю совокупность электромагнитных явлений в макроскопических масштабах.

Изучение дисциплин должно способствовать усвоению физической сущности волновых процессов, причин и источников излучения волн, методов решения задач определения полей на заданных расстояниях. Особую роль играет то обстоятельство, как волны ведут себя в различных однородных и неоднородных средах, на границе раздела сред, как они преломляются и отражаются. Дано представление о различных направляющих структурах, что крайне важно в вопросах техники СВЧ, о замедляющих структурах, на которых построены многие элементы радиоэлектроники, о резонаторах, широко используемых в различных радиосистемах.

Дисциплины рассматривают закономерности распространения радиоволн в околоземном пространстве, в нижней и верхней атмосфере. С физической точки зрения рассматриваются различные явления — рассеяние, дифракция, рефракция и т. д. Важная роль отводится поведению радиоволн в условиях воздействия на них различного рода препятствий.

2. ЗАДАЧИ ДИСЦИПЛИН И ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

При изучении дисциплин в соответствии с учебным планом студент должен знать:

- основные положения электродинамики, которая является фундаментом для грамотной формулировки и решения задач распространения радиоволн;
- теорию электромагнитного поля, которая расширяет общеобразовательную подготовку и способствует формированию у студентов основ профессионального мировоззрения;
- принципы работы различных электромагнитных и электрических устройств, к числу которых могут быть отнесены широко используемые на практике электромагнитные элементы автоматики, электрические машины, магнитные и электрические элементы вычислительной техники, электронные, радиотехнические, криогенные, сверхпроводящие, голографические и другие устройства.

Кроме этого, студент должен уметь:

- спроектировать и рассчитать электромагнитные и электрические устройства на заданные условия работы;
- произвести обоснованный выбор на конкретной радиолинии рабочего диапазона частот;
- выполнить расчет всех необходимых энергетических параметров в радиоканале;
- оценить характер воздействия препятствий на условия приема сигналов.

В процессе усвоения вышеуказанных дисциплин студент также должен приобрести практическое умение обоснованно выбирать и проектировать элементы фидерного тракта, устройства согласования тракта для решения поставленной задачи; получить навыки лабораторных исследований характеристик излучения антенн и согласования тракта, а также проверки работоспособности фидерных систем в период эксплуатации.

3. ВЗАИМОСВЯЗЬ ДИСЦИПЛИН

Для усвоения материалов дисциплин «Электродинамика и распространение радиоволн», «Электродинамика и техника СВЧ» студент должен быть подготовлен по следующим дисциплинам:

физика (разделы «Электричество и магнетизм», «Теория электромагнитного поля»);

высшая математика (разделы «Векторный анализ и теория поля», «Уравнения математической физики с частными производными», особенно решения уравнений Лапласа, Пуассона, Гельмгольца, «Дифференциальное и интегральное исчисление», «Теория рядов», «Специальные функции», «Матричное исчисление»);

основы теории цепей» (разделы «Длинные линии», «Колебательные контуры», «Фильтры»).

Основная форма изучения указанных дисциплин – самостоятельная работа над учебным материалом.

Каждый раздел кроме программы содержит контрольные вопросы, контрольные задания и методические указания к самостоятельной работе и выполнению контрольных работ. В каждой теме раздела указывается рекомендуемая при изучении литература под номером, соответствующим номеру в общем списке литературы.

При изучении перечисленных дисциплин в семестре предусматривается:

- курс лекций в объеме, предусмотренном учебным планом, для обычной и ускоренной форм обучения в течение семестра (для иногородних студентов читается установочный курс лекций перед экзаменом);
 - выполнение четырех лабораторных работ;
- выполнение двух письменных контрольных работ для обычной формы обучения и одной работы для ускоренной формы;
 - объединенный зачет по контрольным и лабораторным работам;
- зачет или экзамен в соответствии с учебным планом по изучаемой в семестре дисциплине.

Экзаменационные билеты могут включать все вопросы, приведенные в программах разделов изучаемых дисциплин.

Рекомендуемая литература

Основная

- 1. Вольман В. И., Пименов Ю. В. Техническая электродинамика. М.: Связь, 1971. 487 с.
- 2. *Баскаков С. И.* Основы электродинамики: Учеб. пособие. М.: Сов. радио, 1973. 248 с.

- 3. *Никольский В. В.* Электродинамика и распространение радиоволн. М.: Наука, 1973. 607 с.
- 4. Грудинская Г. П. Распространение радиоволн: Учеб. пособие. М.: Высш. шк., 1975. 280 с.

Дополнительная

- 5. Техническая электродинамика и антенны. Электродинамика: Учеб. пособие / Ю. Н. Данилов, В. Н. Красюк, Б. Т. Никитин, Л. А. Федорова; ЛИАП. Л., 1991. 165 с.
- 6. Федоров Н.Н. Основы электродинамики. М.: Высш. шк., 1988. 399 с.
- 7. Черенкова Е. Л., Чернышев О. В. Распространение радиоволн. М.: Радио и связь, 1984. 272 с.
- 8. Благовещенский Д. В. Распространение радиоволн: Учеб. пособие / ЛИАП. Л., 1995. 127 с.

Методические указания к выполнению лабораторных работ

- 9. Исследование структуры поля H_{10} и H_{20} при различных нагрузках волновода / Сост: Д. В. Благовещенский, Б. Т. Никитин; ГААП. СПб., 1996. 43 с.
- 10. Исследование поляризационных характеристик электромагнитных волн / Сост: В. С. Калашников, Л. А. Федорова; ГУАП. СПб., 2005. 22 с.
- 11. Исследование структуры электромагнитного поля над проводящей плоской поверхностью / Сост. Л. А. Федорова, Н. А. Гладкий; ГУАП. СПб., 2003. 32 с.
- 12. Исследование дисперсии и затухания волн в волноводе / Сост: Л. А. Федорова, Н. А. Гладкий; ГУАП. СПб., 2003. 28 с.
- 13. Исследование поверхностных волн, распространяющихся вдоль плоских замедляющих систем / Сост: В. С. Калашников; ГУАП. СПб., 2003. 32 с.
- 14. Исследование дифракции электромагнитных волн / Сост: Ю. Н. Данилов; ЛИАП. СПб., 1988. 21 с.

Из указанного перечня лабораторных работ студент выполняет в каждом семестре четыре работы по указанию преподавателя.

4. СОДЕРЖАНИЕ РАЗДЕЛОВ ПРОГРАММ ДИСЦИПЛИН

Электродинамика

Тема 1. Основные уравнения электродинамики

Уравнения Максвелла в действительной и комплексной форме. Электромагнитные свойства сред. Граничные условия. Теорема Умова—Пойнтинга. Волновые уравнения. [1. С. 25–86; (2. С. 8–45; 3. С. 149–164].

Тема 2. Плоские электромагнитные волны

Уравнение плоской волны. Распространение плоских волн в реальных средах (диэлектрик, полупроводник, проводник). Постоянная распространения, фазовая и групповая скорости, волновое сопротивление. Поляризация электромагнитной волны. Отражение плоской волны на границе раздела двух сред. Распространение электромагнитной волны в подмагниченной ферритовой среде. Эффект Фарадея и Коттона—Мутона. [1. С. 165–208, 453–465; 2. С. 46–61].

Тема 3. Излучение электромагнитных волн

Решение уравнений электромагнитного поля с помощью электродинамических потенциалов и вектора Герца. Поле излучения диполя Герца. Ближняя, средняя и дальняя зоны. Основные характеристики излучения элементарного электрического вибратора (диаграмма направленности, полная излучаемая мощность, сопротивление излучения, КНД). Принцип двойственности. Элементарный магнитный излучатель и его характеристики излучения. [1. С. 136–165; 2. С. 206–220; 3. С. 234–280, 136–165].

Тема 4. Направляемые электромагнитные волны и направляющие системы

Виды линий передачи электромагнитных колебаний, волны типа TE и TM. Распространение электромагнитных волн в прямоугольных волноводах. Структуры полей TE_{mn} и TM_{mn} в волноводах прямоугольного и круглого сечений. Основные типы волн. Волновое сопротивление, фазовая постоянная, коэффициент затухания, длина волны в линиях передачи. [1. С. 239–312; 2. С. 85–163; 3. С. 356–421].

Тема 5. Объемные резонаторы

Общие свойства объемных резонаторов. Прямоугольный и цилиндрический резонаторы. Типы колебаний, резонансная частота и структура поля. Возбуждение резонаторов. [1. С. 369–392; 2. С. 180–200; 3. С. 422–442].

КОНТРОЛЬНЫЕ ВОПРОСЫ

Электродинамика

- 1. Каково воздействие электрического и магнитного поля на электрический заряд?
- 2. В чем физический смысл тока проводимости и плотности тока проводимости?
 - 3. Какова дифференциальная форма закона Ома?
 - 4. В чем физический смысл первого уравнения Максвелла?
 - 5. В чем физический смысл второго уравнения Максвелла?
 - 6. В чем физический смысл третьего уравнения Максвелла?
 - 7. В чем физический смысл четвертого уравнения Максвелла?
 - 8. В чем суть понятия тока смещения?
- 9. Что можно сказать о явлении электронной поляризации и векторе поляризации?
 - 10. Записать материальное уравнение для электрического поля.
 - 11. В чем суть явления намагничивания и вектора намагниченности?
 - 12. Записать материальное уравнение для магнитного поля.
 - 13. Что такое анизотропные среды и понятие тензора?
 - 14. В чем суть поляризационных и сторонних токов?
 - 15. Записать уравнения Максвелла для монохроматических колебаний.
 - 16. Что такое комплексная диэлектрическая проницаемость?
 - 17. Что такое угол диэлектрических потерь?
 - 18. Записать уравнение Гельмгольца, его физический смысл.
 - 19. В чем суть понятия вектора Пойнтинга, его физический смысл?
 - 20. Пояснить теорему Пойнтинга, баланс энергий.
- 21. Записать граничные условия для нормальных составляющих магнитного поля.
- 22. Записать граничные условия для нормальных составляющих электрического поля.
- 23. Записать граничные условия для тангенциальных составляющих магнитного поля.
- 24. Записать граничные условия для тангенциальных составляющих электрического поля.
- 25. Каковы составляющие электрического и магнитного полей на границе воздух идеальный металл?
 - 26. В чем общие свойства волновых процессов?
 - 27. Что такое плоские волны? Фаза волны, фазовая скорость?

- 28. В чем смысл затухания плоских волн?
- 29. Что такое сферические волны?
- 30. Что такое цилиндрические волны?
- 31. Что такое элементарный электрический вибратор? Определение и принцип работы.
 - 32. В чем суть неоднородных уравнений Максвелла?
- 33. Что такое электрический векторный потенциал электромагнитого поля?
- 34. Неоднородное уравнение Гельмгольца, в чем его физический смысл?
- 35. Что такое ближняя и дальняя зоны элементарного электрического излучателя?
- 36. Какова диаграмма направленности элементарного электрического излучателя?
 - 37. Что такое сопротивление излучения?
 - 38. Что можно сказать о магнитном токе?
 - 39. В чем суть принципа перестановочной двойственности?
 - 40. Что собой представляет щелевой излучатель?
- 41. Что такое однородная плоская электромагнитная волна с линейной поляризацией?
 - 42. Каковы фазовая скорость и постоянная затухания плоских волн?
- 43. Как ведут себя плоские электромагнитные волны в хорошо проводящих средах?
- 44. Что такое плоские электромагнитные волны с вращающейся поляризацией?
- 45. Плоские электромагнитные волны, распространяющиеся в произвольном направлении. В чем их особенности?
- 46. Нормальное падение плоской электромагнитной волны на идеально проводящую плоскость. Каковы особенности?
- 47. Нормальное падение плоской электромагнитной волны на диэлектрическое полупространство. В чем суть?
- 48. Рассмотреть падение плоской электромагнитной волны на диэлектрик под произвольным углом, общий случай.
- 49. Рассмотреть падение плоской электромагнитной волны на диэлектрик под произвольным углом, перпендикулярная поляризация.
- 50. Рассмотреть падение плоской электромагнитной волны на диэлектрик под произвольным углом, параллельная поляризация.
 - 51. Что такое угол Брюстера?

- 52. Пояснить явление полного внутреннего отражения.
- 53. Косое падение плоской электромагнитной волны с параллельной поляризацией на металлическую плоскость. В чем особенности?
- 54. Косое падение плоской электромагнитной волны с перпендикулярной поляризацией на металлическую плоскость. Каковы особенности?
 - 55. Дать классификацию направляемых волн.
 - 56. Что такое фазовая скорость направляемых волн?
 - 57. Каковы типы направляющих систем?
 - 58. Каковы типы волн в волноволах?
 - 59. Что такое критическая длина волны в волноводе?
- 60. Связь между продольными и поперечными составляющими поля направляемых волн.
 - 61. Как себя ведут волны типа E в прямоугольном волноводе?
 - 62. Вычисление критической длины волны и длины волны в волноводе.
 - 63. Что собой представляет волна типа H в прямоугольном волноводе?
- 64. Что собой представляет волна типа H_{10} в прямоугольном волноводе?
 - 65. Как себя ведут токи на стенках прямоугольного волновода?
- 66. Что такое излучающие и неизлучающие щели для прямоугольного волновода?
 - 67. В чем состоят основы применения прямоугольных волноводов?
- 68. Круглый металлический волновод, переход от прямоугольного к круглому волноводу.
 - 69. Что такое волны типов H_{11} , H_{01} и E_{01} в круглом волноводе?
 - 70. Рассказать о применении круглых волноводов.
 - 71. В чем суть затухания электромагнитной волны в волноводах?
- 72. В чем особенности дифракции плоской электромагнитной волны на отверстии в плоском безграничном экране?
 - 73. Каковы свойства и параметры ферритов?
 - 74. В чем суть эффекта Фарадея в ферритовой среде?
- 75. Распространение электромагнитной волны в неограниченной поперечно-намагниченной ферритовой среде. Каковы особенности?
 - 76. Какие колебания возможны в объемных резонаторах?
 - 77. Что такое добротность закрытых резонаторов?

Распространение радиоволн

Тема 1. Общие вопросы распространения радиоволн и линии радиосвязи

Свободное распространение радиоволн. Влияние Земли на распространение радиоволн. Влияние атмосферы на распространение радиоволн. Область, существенная для распространения радиоволн. Применение принципа Гюйгенса-Френеля. Формула Кирхгофа. Зоны Френеля при отражении. Классификация радиоволн по способу распространения. Понятие «множителя ослабления». Принципы расчета линий радиосвязи. [4. С. 7–38].

Тема 2. Распространение земных волн

Распространение радиоволн над плоской поверхностью Земли при поднятых приемной и передающей антеннах. Электрические параметры Земли. Интерференционный «множитель ослабления». Структура радиоволн в точке приема. Пределы применимости отражательной трактовки. [4. С. 38—90].

Тема 3. Влияние тропосферы на распространение радиоволн

Строение, параметры и коэффициент преломления тропосферы. Явление тропосферной рефракции. Виды рефракции. Распространение тропосферных радиоволн. Сверхрефракция и тропосферные волноводы. Дальнее распространение за счет рассеяния на тропосферных неоднородностях. Поглощение радиоволн в тропосфере. [4. С. 91–126].

Тема 4. Влияние ионосферы на распространение радиоволн

Состав и строение верхних слоев атмосферы. Механизмы и источники ионизации. Распределение электронной концентрации с высотой. Преломление и отражение радиоволн в ионосфере. Максимальная и критическая частота. [4. С. 127–190].

Тема 5. Особенности распространения радиоволн различных диапазонов

Особенности распространения сверхдлинных и длинных радиоволн. Особенности распространения средних волн. Распространение коротких радиоволн. Распространение УКВ и волн оптического диапазона. [4. С. 190–218, 251–258].

Тема 6. Распространение радиоволн в космическом пространстве

Общие принципы использования ИСЗ для осуществления дальней связи. Используемые диапазоны частот. Потери передачи. Искажение сигналов. Доплеровский сдвиг частот. Задержка сигналов. [4. С. 222–250].

КОНТРОЛЬНЫЕ ВОПРОСЫ

Распространение радиоволн

- 1. Каково поведение радиоволны в свободном пространстве?
- 2. Как определить напряженность поля в точке приема и мощность в приемной антенне?
 - 3. В чем суть зон Френеля?
 - 4. Что собой представляют земные волны, каково их поглощение?
 - 5. Описать физику отражения радиоволн на границе воздух земля.
 - 6. Каковы особенности отражения волн от шероховатой поверхности?
 - 7. Дать классификацию распространения земных волн.
 - 8. Каково поле излучателя, поднятого над плоской Землей?
 - 9. Каково поле излучателя вблизи поверхности Земли?
 - 10. Что такое дифракция волн вокруг Земли?
 - 11. В чем смысл береговой рефракции?
 - 12. Каковы состав и строение тропосферы?
- 13. Как себя ведут диэлектрическая проницаемость и показатель преломления тропосферы?
 - 14. Что такое рефракция радиоволн в тропосфере?
 - 15. Какова суть поглощения радиоволн в тропосфере?
- 16. Что собой представляют линии связи с дальним тропосферным распространением?
 - 17. Каковы общие свойства ионосферы?
 - 18. Каковы механизмы и источники ионизации в ионосфере?
 - 19. Каковы основные ионизированные области ионосферы?
- 20. Как себя ведут диэлектрическая проницаемость и проводимость ионизированного газа?
- 21. Каковы скорости распространения радиоволн в ионизированном газе?
 - 22. Пояснить физику поглощения радиоволн в ионизированном газе.
- 23. За счет чего существует поглощение и отражение радиоволн в ионосфере?

- 24. В чем особенности распространения радиоволн при наличии магнитного поля?
 - 25. Каковы методы исследования ионосферы?
- 26. В чем особенности распространения коротких, средних и длинных радиоволн?
 - 27. В чем особенности распространения УКВ?
- 28. Из каких соображений выбирается частота космической линии связи?
 - 29. Какие искажения сигналов возможны при космической связи?

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ

По читаемым дисциплинам в семестре предусмотрено выполнение двух контрольных работ для обычной формы обучения и одной контрольной работы (первой) — для ускоренной формы. Каждая контрольная работа состоит из ряда задач в десяти вариантах. Студенты решают задачи своего варианта в соответствии с последней цифрой шифра. Без выполнения контрольных работ студент не допускается к сдаче зачета или экзамена по читаемой в семестре дисциплине.

Контрольные работы должны быть оформлены в соответствии с общими требованиями для заочных вузов и факультета:

- 1. На обложке тетради контрольной работы необходимо указать: фамилию, имя и отчество; шифр студенческого билета; номер контрольной работы и наименование дисциплины; адрес места жительства.
- 2. При выполнении каждой задачи контрольной работы необходимо записать общие условия, в которых указать значения параметров, взятых из таблиц в соответствии с шифром, и вид поляризации, где это необходимо.
- Порядок выполнения задачи должен идти в указанной последовательности с указанием номеров пунктов.
- 4. При выводе расчетных формул должны быть представлены все преобразования и сделаны соответствующие пояснения.
- 5. При выводе формул обязательно придерживаться указанных в заданиях буквенных обозначений параметров. Если в используемой литературе буквенные обозначения параметров другие, их следует изменить на требуемые обозначения.
- 6. Все буквенные обозначения должны сопровождаться письменными разъяснениями.

- 7. Когда это необходимо расчеты должны сопровождаться соответствующими рисунками, выполненными аккуратно с помощью чертежных инструментов.
- 8. При расчете по сложным формулам необходимо составить таблицы, в графы которых должны быть помещены промежуточные и конечные цифровые результаты с указанием размерности. Расчет проводится с точностью не менее трехзначных цифр.
- 9. Все формулы, рисунки, графики и таблицы должны иметь собственную сквозную нумерацию.
- 10. В конце работы должен быть приведен полный список используемой литературы, оформленный по правилам библиографии с указанием названия, авторов, издательства и года издания.

Контрольные работы, выполняемые по дисциплине «Электродинамика и PPB»

Контрольная работа № 1

Задача 1

В однородной среде (диэлектрик с потерями), которая характеризуется следующими параметрами: абсолютная магнитная проницаемость $\mu_a = 4\pi \cdot 10^{-7} \, \Gamma$ н/м, абсолютная диэлектрическая проницаемость ε_a и проводимость σ (табл. 1), распространяется плоская электромагнитная волна с частотой f и начальной амплитудой электрического поля $E_m = 1 \, \text{В/м}$.

Необходимо определить:

- 1. Расстояние Z, при котором амплитуда электрического поля E уменьшается в 5 раз, т. е. при выполнении условия: $\exp(-\alpha Z) = 0.2$.
 - 2. Расстояние Z, при котором набег фазы составит $\beta Z = 0.75\pi$.
- 3. Сдвиг фазы ϕ_c между полями **E** и **H** и начальную амплитуду (при t=0 и Z=0) магнитного поля H_m .
- 4. Величину среднего значения вектора Умова-Пойнтинга $\Pi_{\rm cp}$ на расстоянии, рассчитанном в п. 1, т. е. когда поле $E_m=0.2$ В/м.
 - 5. Длину волны в диэлектрике λ_{ϵ} .
- 6. Графически построить мгновенные значения полей E и H на расстоянии одной длины волны для момента времени t=0.

Задача 2

Плоская линейно поляризованная электромагнитная волна частотой f падает под углом θ на плоскую границу раздела: воздух — идеальный

диэлектрик. Параметры сред: $\mu_1 = \mu_2 = \mu_0 = 4\pi \cdot 10^{-7} \text{ Гн/м}, \ \epsilon_1 = \epsilon_0 = 10^{-9} / 36\pi \ \Phi/\text{м}$, значения $\epsilon_2 = \epsilon_a / \epsilon_0$ приведены в табл. 1, проводимость сред $\sigma_1 = \sigma_2 = 0$.

При решении необходимо:

- 1. Нарисовать направления падающей, отраженной и преломленной электромагнитных волн, а также ориентацию векторов **E** и **H** при заданной поляризации. Указать углы падения, отражения и преломления.
- 2. Определить угол преломления θ_{np} , коэффициенты отражения и преломления.
 - 3. Определить угол Брюстера.

Таблица 1

Вариант	<i>f</i> , Гц	$\varepsilon_{_{a}}/\varepsilon_{_{o}}$	о, См/м	θ, град	Вид поляризации		
1	105	2	10-6	30	Вектор Е		
2	105	3	3 ·10-5	35	лежит		
3	105	4	10-3	45	в плоскости		
4	106	5	2 ·10-3	50	падения		
5	106	6	10-4	0			
6	107	7	6 ·10-3	60			
7	108	6	5 -10-2	30	Вектор Е		
8	10°	5	10-1	45	перпендикулярен		
9	1010	4	1	35	плоскости падения		
10	104	3	5 -10-6	60	***************************************		

Задача 3

Элементарный электрический излучатель (диполь Герца) длиной l, который возбужден током амплитудой I_m с частотой f (табл. 2) находится в воздушной среде.

При решении необходимо:

- 1. Определить амплитуды векторов напряженности электрического и магнитного полей на расстоянии 20λ (в дальней зоне) и под углом 60° к оси диполя.
 - 2. Определить полную мощность излучения P_{Σ} .
 - 3. Определить сопротивление излучения R_{Σ} диполя Герца.
- 4. Изобразить на рисунке в полярной системе координат нормированные диаграммы направленности электрического вибратора в плоскостях E и H.

Вариант	I_m , A	<i>l</i> , м	f , Γ μ
1	5	5	3-106
2	10	1	15.106
3	15	1,5	107
4	20	30	5.105
5	5	2	107
6	10	. 50	3.105
7	15	2,5	6.106
8	20	15	5.105
9	5	1	107
10	10	0,5	15-106

Расчетные формулы к контрольной работе № 1

К задаче 1

Постоянная распространения $\gamma = \beta - j\alpha$, где фазовая постоянная

$$\beta = \omega \sqrt{\frac{\mu_a \varepsilon_a}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \varepsilon_a^2}} + 1 \right)}$$

и коэффициент затухания

$$\alpha = \omega \sqrt{\frac{\mu_a \varepsilon_a}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \varepsilon_a^2} - 1} \right)}$$

Волновое сопротивление среды
$$W = \sqrt{\frac{\mu_a}{\epsilon_k}} = |W| e^{j\phi_c}$$
,

где $\varepsilon_k = (\varepsilon_{\rm a} - j \ \sigma/\omega)$ – комплексная диэлектрическая проницаемость; аргумент комплексного волнового сопротивления $\phi_{\rm c} = \arctan \sigma/\beta$; модуль волнового сопротивления

$$|W| = \frac{\omega \mu_a}{\sqrt{\alpha^2 + \beta^2}}.$$

Фазовая скорость волны $V_{\Phi} = \omega/\beta$; длина волны в среде $\lambda_g = 2\pi/\beta$.

Векторы ${\bf E}$ и ${\bf H}$ плоской волны, распространяющейся вдоль оси Z, в комплексной форме

$$\mathbf{E} = \mathbf{x}_0 E_m \mathbf{e}^{-j\gamma Z},$$

$$\mathbf{H} = \mathbf{y}_0 \left(E_m / W \right) \mathrm{e}^{-j\gamma Z};$$

в действительной форме

$$\mathbf{E} = \mathbf{x}_0 E_m e^{-\alpha Z} \cos(\omega t - \beta Z),$$

$$\mathbf{H} = \mathbf{y}_0 \left(E_m / |W| \right) e^{-\alpha Z} \cos(\omega t - \beta Z - \varphi_c).$$

Среднее значение вектора Пойнтинга

$$\mathbf{\Pi}_{\mathrm{cp}} = \frac{1}{2} \mathrm{Re} \Big[\mathbf{E} \times \mathbf{H}^* \Big] = \mathbf{z_0} \frac{1}{2} \Big(E_m^2 / |W| \cos \varphi_{\mathrm{c}} \Big).$$

К задаче 2

Коэффициент отражения от границы раздела двух сред:

 горизонтальная поляризация (вектор E перпендикулярен плоскости падения)

$$\Gamma_{\rm r} = \frac{W_2 \cos \theta - W_1 \cos \theta_{\rm np}}{W_2 \cos \theta + W_1 \cos \theta_{\rm np}},$$

- вертикальная поляризация (вектор E лежит в плоскости падения волны)

$$\Gamma_{\rm B} = \frac{W_1 \cos \theta - W_2 \cos \theta_{\rm mp}}{W_1 \cos \theta + W_2 \cos \theta_{\rm mp}},$$

где W_1 и W_2 — волновые сопротивления первой и второй среды соответственно; θ , $\theta_{\rm orp}$, $\theta_{\rm np}$ — соответственно, углы падения, отражения и преломления электромагнитной волны на границе раздела двух сред.

Законы Снеллиуса:

1)
$$\theta = \theta_{orp}$$
;

$$2) \frac{\sin \theta}{\sin \theta_{\rm np}} = \frac{V_{\phi 1}}{V_{\phi 2}} = \frac{\beta_2}{\beta_1}.$$

Угол Брюстера:

$$tg\theta_{6p} = \sqrt{\frac{\varepsilon_{a2}}{\varepsilon_{a1}}}.$$

К задаче 3

Составляющие векторов поля диполя Герца в сферической системе координат (R, θ , ϕ):

$$H_{\Phi} = \frac{I_{m}l}{4\pi} \sin \theta e^{-jkR} \left(\frac{1}{R^2} + j\frac{k}{R} \right),$$

$$E_R = \frac{-jI_{m}l}{2\pi\omega\varepsilon} \cos \theta e^{-jkR} \left(\frac{1}{R^3} + j\frac{k}{R^2} \right),$$

$$E_{\theta} = \frac{-jI_{m}l}{4\pi\omega\varepsilon} \sin \theta e^{-jkR} \left(\frac{1}{R^3} + j\frac{k}{R^2} - \frac{k^2}{R} \right),$$

$$H_{\theta} = H_{R} = E_{m} = 0,$$

где k – волновое число $2\pi/\lambda$; R – расстояние от начала координат до заданной точки.

Мощность излучения $P_{\Sigma} = \frac{{I_m}^2 l^2 k^3}{12\pi\omega\epsilon}$.

Сопротивление излучения для воздуха $R_{\Sigma} = 80 \ \pi^2 (l/\lambda)^2$.

Контрольная работа № 2

Задача 1

Электромагнитная волна с частотой f распространяется в волноводе прямоугольного сечения с размерами широкой и узкой стенок a и b. Среда, заполняющая внутреннюю полость волновода, имеет парамет-

ры: $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м ($\mu = 1$), $\epsilon = \epsilon_a / \epsilon_0$ (табл. 3) и $\sigma = 0$ (отсутствие потерь).

При решении необходимо:

- 1. Определить длину волны в волноводе V_{10} для волны H_{10} .
- 2. Определить волновое (характеристическое) сопротивление волновода для волны H_{10} .
- 3. Определить фазовую V_{Φ} и групповую $V_{\rm rp}$ скорости распространения волны H_{10} .
 - 4. Изобразить на рисунке структуру поля волны H_{10} .
 - 5. Найти вектор Пойнтинга для волны H_{10} .

Задача 2

Определить типы волн, которые могут распространяться в волноводе с воздушным заполнением и поперечными размерами, приведенными в табл. 3, на частоте возбуждения 2f. Изобразить графически две наивысшие структуры волн, существующих при указанных условиях.

Таблица 3

CANADARA I

Вариант	а, см	<i>b</i> , см	f, ГГц	$\varepsilon = \varepsilon_a / \varepsilon_o$	о, См/м
1	2,3	1,0	10	1	2.107
2	7,1	3,5	32	1	2.107
3	7,1	3,5	15	4	2.107
4	2,3	1,0	5	4	3·10 ⁷
5	5,2	2,5	7,5	1	3.107
6	3,6	1,7	3	4	3.107
7	5,8	2,9	3,75	1	6·10 ⁷
8	3,6	1,7	4	4	6·10 ⁷
9	2,5	1,2	7,5	4	7·10 ⁷
10	1,15	0,5	15	4	5.107

Задача 3

Радиоволна с длиной волны 5 см распространяется от передатчика к приемнику.

1. Определить предельное расстояние прямой видимости между антеннами, установленными на мачтах высотой 50 м, для двух случаев: а) тропосферной рефракцией пренебречь; б) учесть нормальную тропосферную рефракцию.

- 2. Найти значение эквивалентного радиуса Земли при нормальной тропосферной рефракции.
- 3. Определить размеры двух областей, существенных для распространения радиоволн, (т. е. рассчитать радиусы первой и шестой зон Френеля) в середине трассы длиной 10 км.

Расчетные формулы к контрольной работе № 2

К задачам 1и2

Критическая длина волны в прямоугольном волноводе с заполнением

$$\lambda_{\rm kp} = \frac{2\sqrt{\varepsilon\mu}}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}},$$

где a, b — размеры широкой и узкой стенок волновода соответственно; m и n — число полуволн, укладывающихся вдоль широкой и узкой стенок волновода.

Условие распространения волны типа H_{mn} или E_{mn} по волноводу $\lambda_{\rm o}/\sqrt{\epsilon\mu}$ $<\lambda_{\rm kp}$, где $\lambda_{\rm o}$ – длина волны генератора, определяется через скорость света C и частоту f из соотношения $\lambda_{\rm o}$ = C/f.

Длина волны в волноводе:

$$\lambda_{B} = \frac{\lambda_{o}}{\sqrt{\epsilon \mu - \left(\frac{\lambda_{o}}{\lambda_{kp}}\right)^{2}}}.$$

Фазовая и групповая скорости в волноводе:

$$V_{\Phi} = \frac{C}{\sqrt{\epsilon \mu - \left(\frac{\lambda_{o}}{\lambda_{\kappa p}}\right)^{2}}},$$

$$V_{\rm rp} = C \sqrt{\epsilon \mu - \left(\frac{\lambda_{\rm o}}{\lambda_{\rm kp}}\right)^2}$$

Волновое сопротивление волновода:

для волны типа
$$H$$
: $W_2^H = \sqrt{\frac{\mu_a}{\mu_a}} \frac{1}{\sqrt{1 - \frac{1}{\mu} \left(\frac{"_o}{"_p}\right)^2}}$,

для волны типа
$$E$$
: $W_{\scriptscriptstyle B}^E = \sqrt{\frac{\mu_a}{\varepsilon_a}} \sqrt{1 - \frac{1}{\varepsilon} \left(\frac{\lambda_o}{\lambda_{\scriptscriptstyle Kp}} \right)^2}$.

Вектор Пойнтинга определяется по формуле

$$\mathbf{\Pi} = 1/2 \left[E_y \cdot \mathbf{1}_y \times H_x \cdot \mathbf{1}_x \right],$$

где H — комплексно сопряженная величина поля H, а составляющие поля основного типа волны H_{10} в волноводе имеют вид

$$\begin{split} H_z &= H_0 \cos\left(\frac{\pi}{a}x\right) e^{-jhz}, \\ H_x &= j\left(\pi h H_0 / ag^2\right) \sin\left(\frac{\pi}{a}x\right) e^{-jhz}, \\ E_y &= -j(\pi \omega \mu_0 H_0 / ag^2) \sin\left(\frac{\pi}{a}x\right) e^{-jhz}, \\ E_x &= E_z = H_v = 0. \end{split}$$

К задаче 3

Расстояние прямой видимости между двумя антеннами с высотами подвеса h_1 , и h_2 определяется следующим образом:

в случае отсутствия тропосферной рефракции:

$$r_0 = 3,57 \cdot [(h_1)^{1/2} + (h_2)^{1/2}], \text{ KM};$$

в случае учета нормальной тропосферной рефракции:

$$r_0 = 4.12 \cdot [(h_1)^{1/2} + (h_2)^{1/2}], \text{ KM}.$$

Для нормальной тропосферной рефракции значение эквивалентного радиуса Земли

$$a_3 = a/[1 + a (dN/dh) \cdot 10^{-6}],$$

где радиус земного шара $a=6,37\cdot 10^6$ м и градиент $dN/dh=-4\cdot 10^{-2}$ 1/м. Кольцевая область, построенная на плоскости, перпендикулярной линии, соединяющей передатчик и приемник, с радиусом R_n называют зоной Френеля номера n. Радиус R_n вычисляется по формуле

$$R_n = [(d_1 d_2 \lambda n)/(d_1 + d_2)]^{1/2},$$

где n – целое число; d_1 – расстояние от передатчика до указанной выше плоскости; d_2 – расстояние от плоскости до приемника.

СОДЕРЖАНИЕ

1. Цель дисциплин и их значение для подготовки специалистов	3
2. Задачи дисциплин и требования к уровню подготовки	4
3. Взаимосвязь дисциплин	4
Рекомендуемая литература	5
4. Содержание разделов программ дисциплин	7
Контрольные вопросы. Электродинамика	8
Контрольные вопросы. Распространение радиоволн	12
5. Методические указания к выполнению контрольных заданий	13
Контрольные работы, выполняемые по дисциплине	
«Электродинамика и РРВ»	14
Контрольная работа № 1	14
Контрольная работа № 2	18