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As a tradition, knowledge and reasoning used to be studied in 
case of a single individual (philosophers and logicians).

Is it sufficient for analysis of daily situations?

• NL discussion

• Business negotiation

• Decision about the next step in complex traffic situation ?

In all these cases we have to rely on some common
knowledge and we need to reason about knowledge
relevant during interaction among several agents, be it
people, robots, complex computer systems, …, machines 
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When acting in real world, an agent must consider both
• facts and rules valid in the considered world,
• knowledge of  his partners (other agents).

Examples. 

Mr. Beatle has to reason about knowledge of 

someone else ...

Detective stories ...

Political news (Watergate case): Dean does not know, if Nixon 
knows, that Dean knows, that Nixon knows, that McCord slipped in 
secretly into O’Brien’s office.

It is not easy to keep the track in such complex reasoning, namely if 
we are not familiar with the context.

?
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Common knowledge example 

Often we assume that all actors in complex situations share 
meaning of some notions, e.g.

Each driver knows that red light means ”stop”, green “go” and 
how these lights are located on a crossroad. 

• Is it sufficient to feel safe on a crossroad?

• Consider “turning left”

To make traffic safe, we have to be sure, that everyone

• knows the rules (i.e. meaning of the signs),

• follows it and

• knows that all the others follow it as well, …!

This seems to be common knowledge! How to describe it?
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In many situations it is necessary to assume that all the 
following observations are true simultaneously: 

• Everyone knows the fact F,

• Everyone knows, that everyone knows the fact F,

• Everyone knows that, everyone knows, that everyone 
knows the fact F,

• …  

Such a fact F is referred to as common knowledge. It is a 
prerequisite for

• Meaningful discussion

• Rational decision making, …
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Muddy children puzzle.

Imagine n children playing together. Their mother warned them:
„If you get dirty there will be severe consequences!“ During their 
play some of the children (say k of them exactly) get mud on 
their forehead.

Along comes their father, who says “At least one of you has mud 
on your forehead.”

Provided k > 1 , this is no surprise for any child ! 

The father asks “Does any of you know whether you have mud on 
your forehead?” over and over again.

What answers will he be obtaining? Can the children come to 
some conclusion?
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Assume that all the children are perceptive, intelligent, truthful and 
willing to answer immediately + just k of them have muddy face.

Let us denote the father’s claim “At least one of you has mud on 
your forehead.” by the symbol p.

If k > 1, it may seem that father provides no new information. All 
over this information is useful - why?

Before the father says p, no child can provide an answer to the 
question „Does any of you know if you have mud on your forehead?“

By induction on k it can be proven that for every round of q questions 
where q < k , all the children have to answer NO.

THUS: k - 1 times the father will hear the answer NO and 
in the k-th round all the children will answer YES.

Father mediates COMMON KMOWLEDGE !
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Formal apparatus to work with knowledge

Kripke’s idea of possible worlds semantics for modal logic:

• Besides the true state of affairs, there are a number of 
alternative states or “worlds” the agent can consider as 
possible. 

• For example we cannot know what will be the weather 
tomorrow – we can exclude some states (e.g. minus 20oC
in May) but other plausible states have to be considered.

Definition. An agent knows the fact  p , if p is true in all 
worlds the agent considers possible taking into account all 
information he has available.

Example. 3 logicians sharing a table in a pub
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Example.

Agent1 walks the streets of Prague, where it is sunny. He has no 
information about the weather in Berlin.

Thus 

• Agent1 has to consider only worlds where there is sunshine in 
Prague. 

• But he can assume nothing about the sky in Berlin – it can be  
either gray or blue.

Agent1 knows in this case that there is sunny in Prague. But he 
does not know that there is sunny in Berlin.
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Intuitive observation: 

The number of considered possible worlds corresponds to 
vagueness!

The smaller is this number (of possible worlds the agent 
considers) the more accurate is his knowledge.

As soon as the agent gains some additional info from a 
reliable resource (e.g. it is sunny in Berlin), he can cancel 
all possible worlds contradicting the obtained fact. 

We need tools that will help us to ensure the relevant
reasoning, namely appropriate language, derivation
rules and semantics. 



Modal logics provides a language for such reasoning

Let us consider a group of n agents named 1, 2, . . . , n, who want 
to reason in some context that can be described using a set of 
primitive propositions Φ denoted as p, p´, q, q´,  . . 

These primitive propositions express the basic facts about the 
intended context, e.g. „it is raining in Prague“, „Mary has mud on 
her forehead”.

To express the claim “Karin knows that it is raining in Berlin” we 
need to enrich the language by modal operators

K1, K2, …. , Kn,

(each agent i has his/her own operator Ki), where the expression Ki p 
is read as „ the agent i knows p“. Further, we use propositional
connectives ¬ (negation)  and conjunction & (often denoted as     )
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Set of Formulas that can be constructed in the modal logics language.

Formulas pp

FormulasFormulas  )(, BAA,BA

FormulasFormulas  AKniA i1and

Standard abbreviations from propositional logics

)(for BABA 

BABA  for
))()((for ABBABA 

truefalse
pptrue  




for
for
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Expressivity.

pKKKpKK 21221 a) 

Agent1 knows, that Agent2 knows p , but Agent2  does not 
know, that Agent1 knows, that Agent2 knows p . 

b) How do we express possibility?

Possibility is understood as a dual notion to knowledge.  

Agent1 considers A to be possible if the Agent1 does not know  
¬ A for sure, i.e.

(1)AK1

c) What is the relation between the meaning of  (1) and K1 A ? Are 
they not the same?
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Semantics of modal logics

Kripke’s semantics of possible worlds.

Kripke’s structure M for n  agents over a set Φ of primitive
propositions is the (n+2)-tuple (S, π , K1, K2, …, Kn)

• S is a set of all worlds (that can be considered in the given 
context) or states,  

• π is interpretation of states corresponding to a truth function 
evaluating all primitive propositions from Φ for each state s
separately, ie.

• binary possibility relations  K1, K2, …, Kn, on S interpreting the 
modal operators K1, K2, …, Kn (rel. Ki connects the state s with any
state of S the agent i considers to be possible alternatives to s ).

},{:)( falsetrues 
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Kripke’s structure can be depicted as a labeled oriented 
graph:

• Its  nodes are the states s from S. Each node s is labeled by 
the set of primitive propositions that are true in the state s.

• Oriented edges are labeled by sets of the agents as follows: 
An oriented edge from the node s to  t is labeled by the
index  i iff the possibility relation Ki of the agent i contains 
the pair (s, t).

This can be further simplified if the relation Ki is symmetric: it is
no more necessary to highlight orientation of the edges and the
arrows are „skipped“. 
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Possible worlds semantics. Given a formula A , we want to know its
meaning in a state s (ie. interpret A for the state s) or specify conditions
under which „the formula A is true in the structure M and the state
s“. This is denoted by (M, s) |= A which is read as

“A  holds in (M, s)“ or “(M, s) satisfies A “. 

(M, s) |= A  is defined by induction wrt. the structure of A :

}{))((iff|),()(  ptruepspsMi 

AsMAsMii  |),(iff|),()(

BsMAsMBAsMiii  |),(a|),(iff|),()(

i

i

Ktst
AtMAKsMiv




),(s.that,allfor
|),(iff|),()(
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Example.

Let us consider Φ = {p} , n = 2 and the following Kripke
structure

),,,( 21 KKSM 

(i)  S = {s, t, u}

(ii)  p is true in the states s and u , not in t, ie.

π(s)(p) = π(u)(p)  =  true   a π(t)(p) =  false

(iii) The agent1 cannot distinguish the state s from t , ie.
)},(),,(),,(),,(),,{( uuttsttsssK1 

For the agent2 there holds )},(),,(),,(),,(),,{( uuttsuusssK2 
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p
s

1, 2

u          1, 2

p

1, 2           t

¬p

1 2

π(s)(p) = π(u)(p)  =  true   a π(t)(p) =  false

)},(),,(),,(),,(),,{( uuttsttsssK1 

)},(),,(),,(),,(),,{( uuttsuusssK2 



19

p
s

1, 2

u          1, 2

p

1, 2           t

¬p

1 2

K2 p¬K1 p

K2 pK1 pK2 ¬ p¬K1 p¬K1 ¬p,

1. step

Truth values of some compound formulas containing just 1 
modal operator
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p
s

1, 2

u          1, 2

p

1, 2           t

¬p

1 2

K2 p¬K1 p

K2 pK1 pK2 ¬ p¬K1 p¬K1 ¬p,

¬K2 ¬K1 p,   ¬K2 K1 p

1. step

2. step

pKKpKpKKpKpKpsM 1222121 )(|),( 

(K2 p  v K2 ¬p)

(K2 p  v K2 ¬p)

K1(K2 p  v K2 ¬p)
¬K2 ¬K1 p

… steps
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p
s

1, 2

u 1, 2

p

1, 2           t

¬ p

1 2

K2 p¬K1 p

K2 pK1 pK2 ¬ p¬K1 p
¬K1 ¬p,

¬K2 ¬K1 p,   ¬K2 K1 p

The 1st step
krok

The 2nd step
krok

¬K1 ¬p

Caution! Now, we can compare meaning of the formulas ¬K1 ¬p and K1 p: their truth 
values differ in the states t and u. These formulas do not have the same meaning !
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1,1,1

1,1,0
1

0,1,11,0,1

0,0,1

1,0,0 0,1,0

0,0,0

1

1

1

1

2

2

2

2
3

3

3

3

Kripke structure for 3 
muddy children –
initial situation



23

1,1,1

1,1,0
1

0,1,11,0,1

0,0,1

1,0,0 0,1,0

0,0,0

1

1

12

2

2
3 3

3

Kripke structure for 3 
muddy children
- after father’s claim p
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Let us consider a Kripke structure M with the set of states S such that
the possibility relation Ki in M has the properties of equivalence, 
namely Ki is reflexive, symmetric and transitive. 

Does this fact have an influence on the structure of the set of states S ?

For any v ϵ S let us define the set Sv of all the possible alternative
states to v the agent i consideres possible Sv = {t ϵ S: (v,t) ϵ Ki }.

Suppose s, t are states from S such that (s,t) ϵ Ki , then the agent i has 
in both states s and t the same sets of possible alternative states Ss and
St , ie. Ss = St and these two sets of states are for the agent i 
undistinguishable! In other words: for any formula α there holds

(M, s)|= Ki α iff (if and only if) (M, t)|= Ki α

This is a simple consequence of the assumption that Ki is an
equivalence relation (namely it is symmetric and transitive).

i

i
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Notation for common and distributed knowledge

To express these notions three additional modal operators are 
introduced for any nonempty subset G of the set of all agents 
{1,2, …. n}, namely

}"{" knowsGgrouptheineveryoneEG

}"{" GinagentstheamongknowledgecommonaisitCG

}"{" GinagentstheamongknowledgeddistributeaisitDG

If  A is a formula, then EG A , CG A and DG A are formulas as 
well.
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Examples of formulas with operators EG , CG  or DG A
and their reading

pCK 213 ],[ Agent3 knows, that  p is not common 
knowledge between the agents  1  a  2. 

qCqD GG  q is distributed knowledge of agents 
in the group G, but it is not a common 
knowledge there.

In order to define semantics of these operators we have to 
introduce (nested) iteration of the operator EG :

AAE0
G  AEEAE n

GG
1n

G 
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Let us define

GiallforAKsMAEsM iG  |),(|),(

kallforAEsMACsM k
GG  1|),(|),(

Both notions have an interesting graphical interpretation: 

Let  G be a nonempty set of agents. We say that the state t is G-
reachable from the state s in 0  k steps, if there is a sequence of
states tssss k10  ,,, 

Such that, for any there exists i  G such that

We say that t is G-reachable from s, if t is G-reachable in 
finite number of steps.

kjj 0,
.),( i1jj Kss 
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Lemma.

s k  G
tAtMAEsMi k

G

 from stepsinreachable
isthat,anyfor|),(|),()(




  s.G
tAtMACsMii G

from reachable
isthatanyfor|),(|),()(




Proof.
(i) Can be proven by induction on  k ,  (ii) is a consequence of (i).

Both claims are valid for any possibility relations Ki - no specific
property (e.g. equivalence) is requested from Ki .
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If we consider just the set of 2 children ( k = 2 ) and the situation 
when both children are muddy. It is not hard to show, that each 
child is in a state, where it is true that „this child knows p“, but 
the claim „everyone knows that everyone knows  p“ is not true.

Similarly, if  k = 3 and all are muddy, the claim „everyone 
knows, that everyone knows  p“ holds.  But the following 
statement does not hold „ everyone knows, that everyone knows, 
that everyone knows  p“

Postponed to the Labs/Excercise session. Suppose there
are exactly k muddy children. Before the father´s first claim each
child is in a state where E(k -1) p holds but where E k p does not 
hold.

Let us denote by p the statement „one of the children is muddy“



Task 5a. Who is the best? Max.evaluation: 1 point 
Deadline for submition of Tasks 5 and 6: 15.5. 09:00 am. 

Three Masters of Logic want to find out who was the
wisest amongst them and asked their Grand Master to 
resolve their dispute. "Easy," the old sage said: 

"I will blindfold you and paint either red, or blue dot on 
each man's forehead. When I take your blindfolds off, if
you see at least one red dot, raise your hand. The one, 
who guesses the color of the dot on his forehead first, 
wins.„ And so it was done …
When he took their blindfolds off, all three men raised their
hands as the rules required, and sat in silence pondering. 
Finally, one of them said: "I have a red dot on my 
forehead." 

A: How did the winner guess? 



Task 5b continued Max.evaluation: 2 
points

After losing the "Spot on the Forehead" contest, the two
defeated Puzzle Masters complained that the winner had 
made a slight pause before raising his hand … . And so 
the Grand Master vowed to set up a truly fair test to 
reveal the best logician amongst them.

He showed the three men 5 hats - two white and three
black. Then he turned off the lights in the room and put a 
hat on each Puzzle Master's head. After that the old sage
hid the remaining two hats, but before he could turn the
lights on, one of the Masters (as chance would have it, 
the winner of the previous contest) announced the color
of his hat. And he was right once again.

B: What color was the winner´s hat? What could have
been his reasoning? 
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Task 6. Card game “Aces and nines” Max.evaluation: 2 points

3 players have a deck consisting of 4 ACEs a 4 NINEs. Each gets 2 cards, 2 
remaining are left face down. None of the players looks at his/her cards -
instead he/she raises them to his/her forehead so that the others can see 
them. All the players take turns trying to determine their own cards. If a 
player does not know his/her cards he/she must say so. The first, who 
announces “I know!” is the winner!

Given 4 ACEs + 4 NINEs, each of the players 1,2,3 must have NN, NA or
AA.

1. Both the Player1 and Player2 say “I cannot determine my cards.”

2. The Player3 can see, that 1AA and 2NN. 

Specify and explain the answer provided by the Player3! 
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